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A #exible elastic pipe transporting #uid is held by an elastic rotational spring at one end, while
at the other end, a portion of the pipe may slide on a frictional support. Regardless of the
gravity loads, when the internal #ow velocity is higher than the critical velocity, large displace-
ments of static equilibrium and divergence instability can be induced. This problem is highly
nonlinear. Based on the inextensible elastica theory, it is solved herein via the use of elliptic
integrals and the shooting method. Unlike buckling with stable branching of a simply sup-
ported elastica pipe with constant length, the variable arc-length elastica pipe buckles with
unstable branching. The friction at the support has an in#uence in shifting the critical locus over
the branching point. Alteration of the #ow history causes jumping between equilibrium paths
due to abrupt changes of direction of the support friction. The elastic rotational restraint brings
about unsymmetrical bending con"gurations; consequently, snap-throughs and snap-backs can
occur on odd and even buckling modes, respectively. From the theoretical point of view, the
equilibrium con"gurations could be formed like soliton loops due to snapping instability.

( 2000 Academic Press
1. INTRODUCTION

A CONSIDERABLE AMOUNT OF RESEARCH WORK was done concerning the problems of a pipe
conveying #uid as mentioned in the papers by Chen (1974), PamKdoussis and Issid (1974), and
in the textbooks by Thompson (1982), Blevins (1990), and more recently by PamKdoussis
(1998). Most of researchers determined stability criteria based on the small displacement
theory. This conventional approach, however, does not take into consideration the post-
buckling information, which supplements the lucid understanding of the mechanisms of
large de#ection of pipes transporting #uid, and are indispensable to the design of nonlinear
system operation control. After publication of the paper by Thompson & Lunn (1981), the
static elastica theory is an alternative approach for nonlinear analysis of pipes conveying
#uid in the case where the pipe is dominated by divergence instability. In that study, the
elastica pipe was considered to have a constant arc-length.

Nevertheless, in some applications, the arc-length of pipe is not constant and it could
vary during operations. One may call such a pipe a variable-arc-length (VAL) pipe.
Marine risers employed in deep-ocean mining (Huang & Chucheepsakul 1985) are
examples of the variable-arc-length pipe. The riser is a #exible conductor pipe, which
extends from the ball joint of the wellhead at seabed to the slip joint beneath the vessel.
The slip joint allows the riser to change its length as the vessel heaves and moves laterally;
consequently, the longitudinal strain is small and the e!ects of extensibility are negligible.
Because of large de#ection behaviour under o!shore environment, the initial (equilibrium)
889}9746/00/080895#22 $35.00/0 ( 2000 Academic Press



896 S. CHUCHEEPSAKUL AND T. MONPRAPUSSORN
con"guration of the riser may be de"ned as a VAL elastica and the riser behaves as a VAL
elastica pipe.

To the authors' knowledge, the problem of VAL elastica pipes transporting #uid has not
yet been considered in the past, thus it is the purpose of this study to explore the
post-buckling behaviour and to investigate the possible equilibrium con"gurations of VAL
elastica pipes transporting #uid. Figure 1(a) illustrates the VAL pipe studied herein. The
pipe is installed on two stationary supports with a span length ¸ and an overhang length l.
One end is held by the pinned support A of elastic rotational spring constant K, whereas the
other end-portion is propped by the support B with a static friction coe$cient k. After
buckling, it can slide over support B.

The literature review on various cases of the VAL pipe may be summarized as follows.

(i) For K"0 and l/¸"0 the VAL pipe becomes a simply supported pipe, which cannot
#utter, as reported by Holmes (1978).

(ii) For K"0 and l/¸"0)582 the VAL pipe is an overhung pipe. Following the
equivalent force analogy given by Thompson & Lunn (1981), the results of Elishako!
& Lottati (1988) show that if l/¸(0)582 the pipe is dominated by divergence, if
l/¸'0)582 the pipe is dominated by #utter, and if l/¸"0)582 the pipe is in transition
between divergence and #utter instability.

(iii) For K"R and l/¸"0 the VAL pipe is a propped cantilever pipe. The experi-
mental and theoretical results given by Yoshizawa et al. (1985) show that the pipe does lose
stability by divergence.

(iv) For K"R and l/¸+0)686. The experimental results given by Jendrzejczyk
& Chen (1983) show that if l/¸(0)686 the pipe is dominated by divergence, if l/¸'0)686
the pipe is dominated by #utter, and if l/¸"0)686 the pipe is at a transition point between
divergence and #utter instability. The "nite element solutions excluding the e!ects of
gravity forces and #uid pressures given by Escobar & Ting (1986) arrived at the same
deduction, but for the transition condition l/¸"0)643.

(v) For K"R and l/¸"R the VAL pipe becomes a cantilevered pipe, which behaves
as Beck's problem (Beck 1952) and thus #utter instability dominates, as shown by Gregory
& PamKdoussis (1966).

It is inferred from the above review that the condition that the VAL pipe could be
dominated by divergence is l/¸(0)582}0)686 for K"0 to R. From a practical point of
view, this condition is su$cient but not necessary; it is speculated that the VAL pipe with
any value of l/¸ behaves as an elastica pipe if the transported #uid is suddenly jetted over
the divergence velocity by a high-pressure pump. This situation, that the divergence
instability always dominates, is used as the main assumption of this study.

The static elastica formulation can be achieved by consideration of equilibrium condi-
tions between interacting #uid and pipe elements. The governing nonlinear di!erential
equation obtained for elasticas, together with the boundary conditions, is solved analyti-
cally using elliptic integrals. As an independent check, the shooting method is also used to
obtain numerical solutions. The e!ects of spring sti!ness and friction at the supports on the
stability criteria and post-buckling behaviour are studied and described in detail. Extensive
bending results are presented graphically and snap-bending incidents are highlighted.

2. ELASTICA FORMULATION

Figure 1(b) shows diagrams of the interacting #uid and pipe in"nitesimal elements.
The transported #uid element is of density o

i
, steady #ow speed;, pressure p

i
, and frictional

drag force q, whereas an in"nitesimal arc-length ds of the elastica pipe is of inner
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cross-sectional area A
i
and #exural rigidity EI. The positive directions of bending moment

M, vertical and normal shear forces< and Q, and horizontal and tangential forces H and ¹,
in the intrinsic coordinate (s, h), are assigned in accordance with bending of a radius of
gyration r and positive curvature i as shown in Figure 1(b). Elastic buckling occurs after the
critical #ow velocity as shown in Figure 1(c). It should be noted that despite sliding of the
pipe end-portion, the pipe tip E is assumed not to fall o! the support B in the mathematical
treatment herein, because such a case is irrelevant to the VAL elastica pipe.

Figure 1(d) shows a free-body diagram of forces acting on an elastica pipe segment. When
the equilibrium of forces in the nL and tL directions of the diagrams of Figure 1(b) are
considered, and the equilibrium of moments is taken about the centre point O of the pipe
element (the derivation is given in Appendix A), the internal force equations are obtained as

dN

dh
!Q"0,

dQ

dh
#N"0,

dM

ds
!Q"0, (1a}c)

where N"¹!p
i
A

i
!o

i
A

*
;2 is the combined tension (Moe & Chucheepsakul 1988).

Based on the constitutive equation of elastica theory,

M"!EI
dh
ds

(2)

with some manipulation of equation (1), the second-order di!erential equations are

d2N

dh2
#N"0,

d2Q

dh2
#Q"0, EI

d2h
ds2

#Q"0. (3a}c)
Figure 1. The variable-arc-length (VAL) elastica pipe transporting #uid: (a) undeformed con"guration; (b)
interaction diagrams of an elastica segment.



Figure 1. (continued) (c) a post-buckling con"guration;(d) a free-body diagram of an elastica segment.
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The general solution of equations (3) together with geometric relations and transformation
of forces as shown in Figure 1(d) yield the set of equations describing plane deformations of
elasticas transporting #uid, namely

N"!C
1

cos h#C
2

sin h, H"!C
1
,

dx

ds
"cos h,

Q"C
1

sin h#C
2

cos h, <"C
2
,

dy

ds
"sin h, (4a}h)

M"C
1
y#C

2
x#C

3
, EI

d2h
ds2

#C
1

sin h#C
2

cos h"0,

where C
1
, C

2
and C

3
are arbitrary constants.

The boundary conditions (BCs) of the VAL elastica shown in Figure 1(c) are as follows:

Geometric BCs Natural BCs

Support A: (x, y)"(0, 0), (s, h)"(0, h
A
), M"!Kh

A
; (5a}c)

Support B: (x, y)"(¸, 0), (s, h)"(s
B
, h

B
), M"0, Q"R, ¹"kDRD; (5d}h)

Outlet end E: p
i
"0, N"kDRD!o

i
A

i
;2. (5i, j)
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Once the boundary conditions (5) are applied to equations (4), the constants C
1
}C

3
and

the support reaction R are determined and written as

C
1
"o

i
A

i
;2(cos h

B
#K sin h

B
)#K

Kh
A

¸

, C
2
"

Kh
A

¸

, C
3
"!Kh

A
,

(6a}e)

R"

o
i
A

i
;2¸ sin h

B
#Kh

A
¸(cos h

B
$k sin h

B
)

, K"tan(h
B
Gu),

where u"tan~1k is the friction angle. The signs $ and G in equations (6d,e) take care of
the value of DRD. Substituting equations (6) into (4) yields the governing equations of this
problem:

N"!Coi
A

i
;2(cos h

B
#K sin h

B
)#

KKh
A

¸ Dcos h#
Kh

A
¸

sin h,

H"!o
i
A

i
;2(cos h

B
#K sin h

B
)#

KKh
A

¸

;
dx

ds
"cos h,

Q"Coi
A

i
;2 (cos h

B
#K sin h

B
)#

KKh
A

¸ Dsin h#
Kh

A
¸

cos h,

(7a}h)

<"
Kh

A
¸

,
dy

ds
"sin h,

M"Coi
A

i
;2 (cos h

B
#K sin h

B
)#

KKh
A

¸ Dy#
Kh

A
¸

x!Kh
A
,

EI
d2h
ds2

#Coi
A

i
;2 (cos h

B
#K sin h

B
)#

KKh
A

¸ Dsin h#
Kh

A
¸

cos h"0.

Thompson & Lunn (1981) showed that equations (7) can also be obtained from analysis
of the empty pipe subjected to the end follower force o

i
A

i
;2 shown in Figure 1(c).

3. ELLIPTIC INTEGRAL SOLUTION

The following dimensionless quantities are introduced for the sake of generality:

xN "
x

¸

, yN "
y

¸

, sN"
s

¸

, s*"
s

s
B

, sN
B
"

s
B
¸

, KM "
K¸

EI
, ;M "

o
i
A

i
;2¸2

EI
, (8a}g)

where s
B

is the total arc-length of an elastica pipe. Then, equations (7h), (5c,f ) and the
n in#ection conditions corresponding to the n unknowns h

c1
, h

c2
,2, h

cn
(which are used in

the integration to determine the elastica solutions), can be written in a nondimensional form

d2h
dsN 2

#[;M (cos h
B
#K sin h

B
)#KKM h

A
] sin h#KM h

A
cos h"0, (9a)

dh
dsN Kh/hA

"KM h
A
,

dh
dsN Kh/hB

"0, (9b,c)

dh
dsN Kh/hC1

"

dh
dsN Kh/hC2

"2"

dh
dsN Kh/hCn

"0 in which n"m#n
s
!1. (9d)
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Let m be the order of the buckling mode and n
s
the number of rotational springs, here n

s
"0

for K"0 and n
s
"1 for KO0. The subscripts A, B, C

1
, C

2
,2, C

n
denote quantities

evaluated at the support points A, B and at the in#ection points C
1
, C

2
,2, C

n
, respectively.

Upon integrating equation (9a) with respect to h and applying equations (9b}d), the
following set of "rst-order di!erential equations and the n#1 constraint equations are
obtained:

iN "
dh
dsN

"$Ja#b sin h#c cos h,
dxN
dsN

"cos h,
dyN
ds6

"sin h, (10a}c)

b (sinh
B
!sin h

A
)#c(cos h

B
!cos h

A
)#KM 2h2

A
"0,

b (sinh
B
!sin h

C1
)#c(cos h

B
!cos h

C1
) "0,

b (sinh
B
!sin h

C2
)#c(cos h

B
!cos h

C2
) "0, (11)

F F F
b (sinh

B
!sin h

Cn
)#c (cos h

B
!cos h

Cn
) "0,

where

a"!b sin h
B
!c cos h

B
, b"!2KM h

A
, c"2[;M (cos h

B
#K sin h

B
)#KKM h

A
]. (12a}c)

The minus sign (!) of the dimensionless curvature iN is for the concave curve, whereas
the plus sign (#) is for the convex curve of elastica portions.

The integration and mapping of equations (10) by elliptic integrals (Byrd and Friedman
1971) yield the closed-form solutions of equilibrium con"gurations as follows in tabular
form:

Coordinates The interval containing a point Z is from
refer from the
point A to any Z A to C

1
C

1
to C

2
2 C

n
to B

sN
Z
" sN

AZ
sN
AC1

#sN
C1Z

2 sN
AC1

#sN
C1C2

#2#sN
Cn~1Cn

#sN
CnZ

(13)
xN
Z
" xN

AZ
xN
AC1

#xN
C1Z

2 xN
AC1

#xN
C1C2

#2#xN
Cn~1Cn

#xN
CnZ

(14)
yN
Z
" yN

AZ
yN
AC1

#yN
C1Z

2 yN
AC1

#yN
C1C2

#2#yN
Cn~1Cn

#yN
CnZ

(15)

In equations (13)}(15),

sN
ij
"P

hj

hi

dh
iN
"G

J2

(b2#c2)1@4
[F(U

j
, k)!F(U

i
, k)] for h

j
5h

i
of positive iN ,

J2

(b2#c2)1@4
[F(U

i
, k)!F(U

j
, k)] for h

j
(h

i
of negative iN ,

(16)

xN
ij
"P

hj

hi

cos h dh
iN

"G
J2c

(b2#c2)3@4Cg(U
j
, k)!g (U

i
, k)#

2kb

c
(cosU

j
!cos U

i
)D for h

j
5h

i
,

J2c

(b2#c2)3@4Cg(U
i
, k)!g (U

j
, k)#

2kb

c
(cosU

i
!cosU

j
)D for h

j
(h

i
,

(17)
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yN
ij
"P

hj

hi

sin hdh
iN

"G
J2b

(b2#c2)3@4Cg(U
j
, k)!g(U

i
, k)!

2kc

b
(cosU

j
!cosU

i
)D for h

j
5h

i
,

J2b

(b2#c2)3@4Cg(U
i
, k)!g(U

j
, k)!

2kc

b
(cosU

i
!cos U

j
)D for h

j
(h

i
,

(18)

in which the following parameters are prescribed in mapping:

g (U
i
, k)"2E(U

i
, k)!F(U

i
, k), u"sin~1A

b

pB"cos~1A
c

pB,
(19a}e)

U
i
"sin~1AS

p!b sin h
i
!c cos h

i
a#p B, k"S

a#p

2p
, p"Jb2#c2.

The functions F(U, k) and E(U, k) are the adjustable elliptic integrals of the "rst and
second kind, respectively, de"ned as

F(U, k)"sgn(h)]MJacobi's standard elliptic integrals of the "rst kindN, (19f)

E(U, k)"sgn(h)]MJacobi's standard elliptic integrals of the second kindN, (19g)

where

sgn(h)"G
1 if sin(u!h)40,

!1 if sin(u!h)'0.
(19h)

There are n#2 unknowns in the foregoing elliptic integral formulation, namely either(h
A
,

h
B
, h

C1
, h

C2
,2, h

Cn
) under displacement control or (h

A
, h

C1
, h

C2
,2, h

Cn
, ;M ) under internal

#ow control of the stability of the pipe. Therefore, n#2 equations are required for solution,
for instance equations (5d) and (11). Equation (5d) with the assistance of equations (15) and
(18) can be expressed in elliptic integrals form as

yN
B
"yN

AC1
#yN

C1C2
#yN

C2C3
#2#yN

Cn~1Cn
#yN

CnB
"0, (20a)

where for n being an even number,

yN
B
"

J2

(b2#c2)3@4

g(U
A
, k)!2g(U

C1
, k)#2g(U

C2
, k)

!2!2g(U
Cn~1

, k)#2g(U
Cn

, k)!g(U
B
, k)

!

2kc

b A
cosU

A
!2 cosU

C1
#2 cosU

C2

!2!2 cosU
Cn~1

#2 cosU
Cn
!cosU

B
B

(20b)

and when n is an odd number,

yN
B
"

J2

(b2#c2)3@4

!g(U
A
, k)#2g(U

C1
, k)!2g(U

C2
, k)

#2!2g(U
Cn~1

, k)#2g(U
Cn

, k)!g(U
B
, k)

!

2kc

b A
!cosU

A
#2 cosU

C1
!2 cosU

C2

#2!2 cosU
Cn~1

#2 cosU
Cn
!cos U

B
B

. (20c)

The system of nonlinear algebraic equations (11) and (20) is solved using the quasi-
Newton method of minimization for the sake of global convergence (Press et al. 1992). The
details of the iterative procedure are given in Chucheepsakul et al. (1999).
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4. SHOOTING METHOD

In view of equations (2), (5), (7) and (8), another nondimensional form of the governing
di!erential equations and the boundary conditions can be written as

dh
ds*

"sN
B
[!KM h

A
(xN #KyN !1)!;M yN (cos h

B
!K sin h

B
)], (21)

dxN
ds*

"sN
B
cos h,

dyN
ds*

"sN
B
sin h, (22a,b)

xN (0)"0, yN (0)"0, h(0)"h
A
, xN (1)"1, yN (1)"0, h(1)"h

B
. (23a}f )

There are "ve unknowns in the above equations, namely either (h, xN , yN , sN
B
, h

A
) under

displacement control or (;M , xN , yN , sN
B
, h

A
) under internal #ow control of the stability of the

pipe. By employing the "ve end conditions of equations (23a}e), this boundary value
problem under internal #ow control could be solved by the following procedure.

Firstly, the shooting angle is prescribed by the initial values of equations (23d}f) and the
guessed values of sN

B
, ;M and h

A
. Secondly, the integration is carried out from s*"1 to

0 using the "fth-order Cash}Karp Runge}Kutta Fehlberg method (Press et al. 1992).
Thirdly, the error norms are evaluated relative to the targets of equations (23a}c) and the
following objective function P is minimized using the downhill simplex method (Nelder
& Mead 1965):

Minimize
sN B,UM ,hA

P"DxN (0)D#DyN (0)D#Dh(0)!h
A
D. (24)

Finally, the foregoing steps are iterated until the allowable error is achieved.

5. STABILITY CRITERIA

The conventional approach for determining bifurcation criteria of the VAL elastica pipe is
based on linear theory, which uses the small displacement assumption, ds+dx,h+dy/dx
and cos h+1, sin h+0. Thereby, equations (6) yield C

1
"o

i
A

i
;2, C

2
"C

3
"0, R"0 and

K"Gk. By manipulating equations (2) and (4g), one obtains the boundary value problem
of linear system,

y,
xxxx

#b2y,
xx
"0 (25a)

with the boundary conditions

y(0)"0, y(¸)"0, (25b,c)

y,
xx

(0)"KK y,
x
(0), y,

xx
(¸)"0, (25d,e)

where a subscript ( ),
x
"d( )/dx, b2"o

i
A

i
;2/EI and KK "K/EI.

Equation (25a) has the general solution

y"A
1

sinbx#A
2
cosbx#A

3
x#A

4
, (26)

in which A
1
, A

2
, A

3
and A

4
are constants depending on the boundary conditions.
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Applying equation (26) to equations (25b}e) yields the characteristic equation

K
0 1 0 1

sinb¸ cosb¸ ¸ 1

KK b b2 KK 0

b2 sinb¸ b2 cosb¸ 0 0 K"0. (27)

Expansion of this determinant along with some manipulations yield

tan u"
KM u

u2#KM
, (28)

where u"b¸, and u2 is the dimensionless bifurcation velocity ;M
b
. For the case of simply

supported VAL elastica pipes, KM "0, thus equation (28) is simpli"ed to tan u"0 or
;M

b
"m2n2, which is the well-known Euler buckling solution. For the case of "xed sup-

ported VAL elastica pipes, the limit of equation (28) when KM PR yields the characteristic
equation tan u"u.

On switching to the elastica theory, the same stability limits are derived from the
condition

sN
B
"sN

AC1
#sN

C1C2
#sN

C2C3
#2#sN

Cn~1Cn
#sN

CnB
"1. (29a)

Substituting equation (16) into equation (29a) yields the characteristic equations of stability
limits as follows. For n being an even number,

sN
B
"

J2

(b2#c2)1@4 C
F(U

A
, k)!2F(U

C1
, k)#2F(U

C2
,k)

!2!2F(U
Cn~1

, k)#2F(U
Cn
, k)!F(U

B
, k)D"1 (29b)

and for n being an odd number,

sN
B
"

J2

(b2#c2)1@4 C
!F(U

A
, k)#2F(U

C1
, k)!2F(U

C2
, k)

#2!2F(U
Cn~1

, k)#2F(U
Cn
, k)!F(U

B
, k)D"1. (29c)

Equations (29) are easily examined by hand in the case of KM "0 under the parameters
simpli"ed from equations (19) as follows:

h
i
P0, i"A, C

1
, C

2
,
2

, C
n
, B, a"!2;M

b
, b"0, c"2;M

b
, (30a}c)

u"0, p"2;M
b
, U

i
"

n
2
, k"0, (30d}g)

F(U
i
, k)"FA

n
2
, 0B"G

n
2

if h
i
P0`,

!

n
2

if h
i
P0~,

J2

(b2#c2)1@4
"

1

J;M
b

. (30h,i)

Substituting equations (30) into equations (29) yields the stability limit as

;M
b
"(n#1)2n2"m2n2, (31)

which is the Euler buckling solution as well. The numerical results of bifurcation velocity
determined from equations (28) and (29) are found identical and are shown in Figure 5(b).

The numerical results of #ow velocity}displacement curves shown in Figures (2) and 5(a)
indicate that the bifurcation velocities ;M

b
at the branching point are also the critical

velocities. Nevertheless, when the support friction is taken into account, the critical
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velocities are set apart from the bifurcation velocities as shown in Figure 4(a). In such a case,
the critical velocities are determined using the dichotomous search method (Rao 1996).

6. RESULTS AND DISCUSSION

The elliptic integral method and the shooting method have been cross-checked for
validating almost all of the postbuckling results presented in this study. An example to
show validity of the solution is given in Table 1 in which numerical results are compared
for the VAL elastica pipes with KM "0 and k"0. It is seen that the two methods
yield almost identical results. However, the shooting method has advantage over the elliptic
integral method in view of the unknown number, complexity of formulation, and indepen-
dence of in#ection points. To demonstrate the e!ects of arc-length variableness, of
support friction, and of elastic rotational restraint on postbuckling behaviour of the
VAL elastica pipe, the following three numerical examples with di!erent boundary condi-
tions are studied.

6.1. SIMPLY SUPPORTED VAL ELASTICA PIPES

Figure 2 illustrates the relationship between the internal #ow velocity ;M and the support
rotations h

A
, h

B
of the constant-arc-length elastica pipe and the VAL elastica pipe. The

equilibrium paths of the systems are along the vertical axis, the horizontal branching lines,
and the ascendent and descendent branching curves. On the equilibrium paths overlying on
the vertical axis, the three states of possible behaviour of the pipes may be explained as
follows.

(a) Stable state (before a branching point). This state occurs when the pipes convey #uid
with internal #ow velocity less than the critical #ow velocity ;M

cr
. In this state the VAL

elastica pipe does not have both bending and sliding (h
A
"h

B
"0) because no buckling has

occurred. Consequently, there is no di!erence of behaviour between linear problems and
elastica problems.

(b) Critical state (at a branching point). This state occurs when the pipes convey #uid
with internal #ow velocity equal to the critical #ow velocity ;M

cr
. In this state the VAL

elastica pipe still does not have both bending and sliding (h
A
"h

B
"0) because of being in

a transition state. This implies that the stability criteria of both linear problems and elastica
problems are the same.

(c) ;nstable state (over a branching point). This state occurs when the pipes convey #uid
with internal #ow velocity higher than the critical #ow velocity ;M

cr
. All the points that

belong to the #ow velocity axis and are located above ;M
cr

belong to this state. These
equilibrium states are unstable and cannot be maintained if a disturbance, however small, is
applied to the pipe. Practically, equilibrium paths will bifurcate along branching curves
rather than going on this state.

On the equilibrium paths along the horizontal branching lines, and the ascendent and
descendent branching curves, the three post-buckling states of the pipes may be explained
as follows.

(i) Stable post-buckling state (along the ascendent branching curves) is the state that
when ;M increases, the end rotations h

A
and h

B
will increase as well, and the elastica

will be bent stably, namely a small disturbance does not a!ect to the equilibrium of the
system. The constant-arc-length elastica pipe is on this state after buckling, as shown
in Figure 2.
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Figure 2. Relationship between internal #ow velocity ;M and support rotations h
A

and h
B

for KM "0 and k"0.
*1*, Elastica pipes with constant arc-length; **, linear, small de#ection; , elastica pipes with variable
arc-length. The symbol &s' denotes stable state; and &u', unstable state. The numbers 1,2,3,4 indicate instability mode

numbers: 1,2,3,4, respectively.
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(ii) Neutral post-buckling state (along the horizontal branching lines) is the state that
the pipe may undergo small lateral de#ections with no change of the critical #ow velocity
;M

cr
. This state occurs only with the ideal pipe based on the linear analysis, as shown

in Figure 2.
(iii) ;nstable post-buckling state (along the descendent branching curves) is the state that

when ;M decreases, the end rotations h
A

and h
B

increase instead of decreasing. This implies
that after buckling, the pipe will be bent unstably, namely a small disturbance will initiate
continuous pipe motion. The VAL elastica pipe is on this state after buckling, as shown in
Figure 2.

The possible unstable equilibrium con"gurations of VAL elasticas transporting #uid with
the steady #ow velocity ;M "6 are displayed in Figure 3 for the 1st}4th buckling modes. It
is found that for an equal ;M , the elastica length sN

B
of higher-order modes is longer than

that of lower-order modes. However, when the unstable equilibrium of all buckling modes
of the VAL elastica pipe reaches the "nal state h

A
"h

B
"n/2, the arc-length of all the modes

will become equal, and has the maximum value sN
B(.!9)

"2)1884 as shown in Table 1.



Figure 3. Unstable equilibrium con"gurations for KM "0, k"0, and ;M "6.

ELASTICA PIPES TRANSPORTING FLUID 907
Chucheepsakul et al. (1995,1996,1997) were aware that this value is an invariant property of
the single curvature bending of VAL elasticas under moment gradient, end moment, and
point load.

6.2. FRICTIONALLY SUPPORTED VAL ELASTICA PIPES

The e!ect of friction at the support B is studied on the fundamental buckling mode by "xing
KM "0 and varying k"0 to 1. Figure 4(a) shows the e!ect on #ow velocity}displacement
relationships in the case of k"0)25 and 0)5 for #ow-loading condition (history of steady
#ow increase) and k"!0)25 and !0)5 for #ow-unloading condition (history of steady #ow
decrease).

Under #ow-loading conditions the equilibrium paths of the frictionally supported VAL
elastica pipe are somewhat di!erent from those of the simply supported VAL elastica pipe.
Though their stable states are the same on the vertical axis, after bifurcation the branching
Figure 4. (a) E!ect of friction coe$cient k on the relationship between internal #ow velocity ;M and support
rotations h

A
and h

B
.



Figure 4. (continued) (b) Equilibrium path changes; (c) critical #ow velocities;M
cr
; (d) equilibrium con"gurations:

path &abc' is stable for ;M "10 (loading), and unstable for ;M "10}9)7259 (unloading); path &ade' is critical for
;M "10)5346 (loading), and unstable for ;M "10)5346}8)0452 (unloading); path &afg' is unstable for both ;M "10
(loading) and;M "10}5)5703 (unloading); path &ahi' is unstable for ;M "5 (loading), and no equilibrium for ;M "5

(unloading); path &aj' is unstable for ;M "0 (loading), and no equilibrium for ;M "0 (unloading).

TABLE 2

Parameters of equilibrium path change corresponding to Figure 4(b)

k"0)5 k"!0)5 Stability status change

Path s
B
/¸ h

B
(rad) ;M h

B
(rad) ;M LoadingPUnloading

abc 1)0002 !0)0277 10 !0)0277 9)7259 StablePunstable
ade 1)0174 !0)2618 10)5346 !0)2618 8)0452 CriticalPunstable
afg 1)0696 !0)5136 10 !0)5136 5)5703 UnstablePunstable
ahi 1)4368 !1)1406 5 * * UnstableP

no equilibrium exists

908 S. CHUCHEEPSAKUL AND T. MONPRAPUSSORN
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curves of the frictionally supported VAL pipe grow, corresponding to an increase of support
rotations before reaching the critical point and their descent as shown in Figure 4(a). This
means that, after buckling, the pipe will be in the stable post-buckling state, the critical
post-buckling state, and the unstable post-buckling states, respectively. This behaviour
could be explained as follows.
Figure 5. E!ect of spring sti!ness KM on (a) the relationship between;M and h
B
:*n*, KM "0;*d*, KM "1;*h*,

KM "10; *1*, KM "10 000; (b) critical #ow velocity ;M
cr
.
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Before branching, support friction has no e!ect on the bifurcation velocity, because it is
still a nonworking force as long as the VAL pipes are motionless. Referring to equation (6d),
R(h

A
"0, h

B
"0)"0, and thus the friction force kDRD"0. After branching, the friction

force becomes a working force, to resist large displacements, and thus stabilizes the elastica.
That yields an increase in the branching curves, which expresses the stable buckling state as
explained in the previous topic. However, when the larger end-rotations are induced due to
the higher internal #ow velocity, it is seen that the branching curves tend to reach the peak
value of;M , which is known as the maximum or critical value of;M or;M

cr
. There, the e!ect of

support friction is no longer enough to stabilize the elastica; thus the system turns back to
be dominated by the internal #ow, and after that, it undergoes the unstable post-buckling
state along the descending curves as shown in Figure 4(a).

Under #ow-unloading conditions as shown in Figure 4(a), the equilibrium paths of the
frictionally supported VAL elastica pipe are along the vertical axis, and the descendent
branching curves as well as those of the simply supported VAL elastica pipes in the previous
topic. The e!ect of support friction destabilizes the elastica owing to the opposite change of
friction direction. Also, in Figure 4(a), it is seen that the locus of critical state is raised as the
friction coe$cient increases.

The direction of the support friction is nonconservative. If a #ow-unloading condition
happens due to any reduction of #ow velocity such as partially closing the valve at inlet, the
friction direction will be suddenly changed to the opposite direction. Consequently, the
equilibrium path is abruptly altered, and then induced jumping between the equilibrium
paths of #ow-loading and #ow-unloading conditions as shown in Figure 4(b). As a result,
changes of stability status may occur as shown in Figure 4(b), paths abc, ade, afg, and ahi.
The parameters of these paths are listed in Table 2, and the equilibrium con"gurations
are shown in Figure 4(d). The e!ect of the support friction on critical velocity shown in
Figure 4(c) is to increase the critical velocity under the #ow-loading conditions, but have no
in#uence under the #ow-unloading conditions.
Figure 6. Unstable equilibrium con"gurations for KM "10 000, k"0, and ;M "6.
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6.3. ELASTICALLY RESTRAINED VAL ELASTICA PIPES

The e!ect of elastic rotational restraint at the support A is studied in the 1st}4th
buckling modes by "xing k"0 and varying KM "0}10 000. Figure 5(a) shows the
e!ect on the relationship between the #ow velocity;M and the support rotation h

B
for KM "0,

1, 10, and 10 000. Figure 5(b) shows the e!ect on augmentation of the bifurcation
and critical velocities in semi-log scale. It is observed that the critical velocities are
almost constant for KM 51000. For such a condition, support A may be considered as a "xed
boundary condition.

The unstable equilibrium con"gurations of the VAL elasticas transporting #uid for
KM "10 000, k"0, and;M "6 are displayed for the 1st}4th buckling modes in Figure 6. It is
clearly seen that the elasticas are bent skew-forward in the odd buckling modes and
skew-backward in the even buckling modes. As a thorough investigation towards these
aspects, the authors detected the snap-throughs in the odd modes and the snap-backs in the
even modes of instability whenever KM '0. For example, in the case of KM "10 000 and
k"0, the complete #ow velocity}displacement curves are shown and encircled with dashed
line boxes on the ranges of snap-bending appearance in Figure 7.
Figure 7. Relationship between ;M and h
B

for KM "10 000 and k"0.*n*, First instability mode:*d*, second
mode; *h*, third mode; *1*, fourth mode.
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The snapping phenomena may be explained physically by comparing with the snap-
bending behaviour of a shallow arch. As the arch is subjected to transversal load until
a critical state, the snapping will occur suddenly to change the curvature of the arch from
convex to concave. Likewise, after buckling, the unsymmetrical large de#ection of the VAL
elastica pipe enhances rolling the elasticas to the complex closed loops, as shown in the
gradual formation process in Figures 8 and 9. Such behaviour brings about switching of
every curvature of the elasticas either from concave to convex or from convex to concave.
Figure 8. Loop formation of equilibrium con"gurations due to snap-throughs for KM "10 000 and k"0: (a) the
"rst instability mode; (b) the third instability mode.
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With the same incentive as in the case of the shallow arch, the changes of all curvatures of
the elastica pipe induce snapping phenomena as well.

The skew-forward bending of the elasticas in odd buckling modes induces snapping by
the counterclockwise rotation of curvatures as shown in Figures 8, which is called snap-
through. Conversely, the skew-backward bending of the elasticas in even buckling modes
induces snapping by the clockwise rotation of curvatures as shown in Figures 9, which is
Figure 9. Loop formation of equilibrium con"gurations due to snap-backs for KM "10 000 and k"0: (a) the
second instability mode; (b) the fourth instability mode.
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called snap-back. The complex closed-loop con"gurations of the elasticas are found akin to
the loop soliton formation of a very long #exible elastic structure such as elastic metal band,
rubber band or ribbon under chaotic motion, as shown by the experiments done by El
Naschie (1990).

7. CONCLUDING REMARKS

The governing equations and post-buckling solutions for variable-arc-length elastica pipes
transporting #uid with steady #ow velocity are presented. The two approaches used to solve
the problem, namely the elliptic integral method and shooting method, yield almost the
same results. The branching limits obtained from the linear theory and the elastica theory
are the same. After bifurcation, a simply supported elastica pipe with constant length
buckles with stable bending, while the variable arc-length elastica pipe buckles with
unstable bending.

Under #ow-loading conditions, the support friction stabilizes the elasticas and increases
the critical velocities. Under #ow-unloading conditions, friction destabilizes the elasticas,
but has no in#uence on branching states. The reduction of #ow velocity may change the
stability status of the elasticas due to a sudden change of friction direction. The e!ect of
elastic rotational restraint is to stabilize the elasticas and to increase critical velocities. This
e!ect leads to the unsymmetrical bending of at least two curvatures and eventually results in
snap-bending behaviour.
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APPENDIX A: EQUILIBRIUM EQUATIONS

A.1. FORCES ACTING ON A FLUID ELEMENT

From Figure 1(b), the forces acting on a #uid element are

(i) the centrifugal force"(o
i
A

i
ds)a

n
"o

i
A

i
;2

ds

r
"o

i
A

i
;2 dh; (A.1)

(ii) the radial pressure force"(p
i
#dp

i
)A

i
sin(dh/2)#p

i
A

i
sin(dh/2), but sin(dh/2)+

dh/2 and neglecting the higher-order term gives

the radial pressure force"Apidh#
dp

i
dh

2 BAi
"p

i
A

i
dh; (A.2)

(iii) the normal reaction between the #uid and pipe F
n
ds; from the Newton's second law

(+ F
n
"the centrifugal force),

F
n
ds!p

i
A

i
dh"o

i
A

i
;2 dh,

F
n
ds"(o

i
A

i
;2#p

i
A

i
) dh; (A.3)

(iv) the tangential reaction between the #uid and pipe F
t
ds; because of ; is constant

(a
t
"0), therefore +F

t
"0,

F
t
ds!(p

i
#dp

i
)A

i
cosA

dh
2 B#p

i
A

i
cosA

dh
2 B!qds"0,

but

cosA
dh
2 B+1, F

t
ds!A

i
dp

i
!qds"0,

F
t
ds"Adp#q ds. (A.4)
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A.2. FORCES ACTING ON A PIPE ELEMENT

From Figure 1(b), the forces acting on a pipe element are

(i) the normal reaction between the #uid and pipe F
n
ds;

F
n
ds!C(Q#dQ) cosA

dh
2 B!Q cosA

dh
2 BD!C(¹#d¹) sinA

dh
2 B#¹ sinA

dh
2 BD"0,

F
n
ds"dQ cosA

dh
2 B#(2¹#d¹) sinA

dh
2 B,

F
n
ds"dQ#¹dh; (A.5)

(ii) the tangential reaction between the #uid and the pipe F
t
ds;

F
t
ds#C(Q#dQ) sinA

dh
2 B#Q sinA

dh
2 BD!C(¹#d¹) cosA

dh
2 B!¹ cosA

dh
2 BD!qds"0,

F
t
ds"d¹ cosA

dh
2 B!(2Q#dQ) sinA

dh
2 B#qds,

F
t
ds"d¹!Q dh#q ds. (A.6)

A.3. INTERNAL FORCE EQUATIONS

Combining equations (A.3) and (A.5) yields

dQ#(¹!o
i
A

i
;2!p

i
A

i
) dh"0. (A.7)

De"ne now the combined tension (Moe & Chucheepsakul 1988)

N"¹!p
i
A

i
!o

i
A

i
;2. (A.8)

Therefore, equation (A.7) becomes

dQ

dh
#N"0. (A.9)

Likewise, by equality of equations (A.4) and (A.6), one obtains

d¹!Qdh!A
i
dp

i
"d(¹!p

i
A

i
!o

i
A

i
;2)!Qdh"0,

dN

dh
!Q"0. (A.10)

Taking a moment summation about the centre of curvature of the pipe element (point O),

!(M#dM)#M!F
t
ds Ar#

d
i

2B#(¹#d¹) r!¹r#qds r"0.

Since r#d
i
/2+r, F

t
ds"d¹!Qdh#qds (equation (A.6)) and rdh"ds,

!dM!(d¹!Q dh)r#r d¹"!dM#Q ds"0,

dM

ds
!Q"0. (A.11)

Equations (A.9)} (A.11) are the general equilibrium di!erential equations of internal forces
for 2-D inextensible analysis of the elastica pipe, neglecting its own weight.
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